Bloomery

A bloomery is a type of furnace once widely used for smelting iron from its oxides. The bloomery was the earliest form of smelter capable of smelting iron. A bloomery's product is a porous mass of iron and slag called a bloom. This mix of slag and iron in the bloom is termed sponge iron, which is usually consolidated (shingled) and further forged into wrought iron. The bloomery has now largely been superseded by the blast furnace, which produces pig iron.

Contents

Structure and process

A bloomery consists of a pit or chimney with heat-resistant walls made of earth, clay, or stone. Near the bottom, one or more pipes (made of clay or metal) enter through the side walls. These pipes, called tuyères, allow air to enter the furnace, either by natural draft, or forced with bellows or a trompe. An opening at the bottom of the bloomery may be used to remove the bloom, or the bloomery can be tipped over and the bloom removed from the top.

Process

The first step taken before the bloomery can be used is the preparation of the charcoal and the iron ore. The charcoal is produced by heating wood to produce the nearly pure carbon fuel needed for the smelting process. The ore is broken into small pieces and usually roasted in a fire to remove any moisture in the ore. Any large impurities in the ore can be crushed and removed. Since slag from previous blooms may have a high iron content, it can also be broken up and recycled into the bloomery with the new ore.

In operation, the bloomery is preheated by burning charcoal, and once hot, iron ore and additional charcoal are introduced through the top, in a roughly one to one ratio. Inside the furnace, carbon monoxide from the incomplete combustion of the charcoal reduces the iron oxides in the ore to metallic iron, without melting the ore; this allows the bloomery to operate at lower temperatures than the melting temperature of the ore. As the desired product of a bloomery is iron which is easily forgeable, nearly pure, and with a low carbon content, the temperature and ratio of charcoal to iron ore must be carefully controlled to keep the iron from absorbing too much carbon and thus becoming unforgeable. Because the bloomery is self-fluxing the addition of limestone is not required to form a slag.

The small particles of iron produced in this way fall to the bottom of the furnace and become welded together to form the spongy mass of the bloom. The bottom of the furnace also fills with molten slag, often consisting of fayalite, a compound of silicon, oxygen and iron mixed with other impurities from the ore. Because the bloom is highly porous, and its open spaces are full of slag, the bloom must later be reheated and beaten with a hammer to drive the molten slag out of it. Iron treated this way is said to be wrought, and the resulting nearly pure iron wrought iron or bar iron. It is also possible to produce steel by manipulating the charge of and air flow to the bloomery .[1]

History

Iron appears to have been smelted in the west as early as 3000 BC, but bronze smiths, not being familiar with iron, did not put it to use until much later. In the west, iron began to be used around 1200 BC, presumably as a replacement for bronze, which was becoming harder to come by due to shortages of copper and tin.

The onset of the Iron Age in most parts of the world coincides with the first widespread use of the bloomery. While earlier examples of iron are found, their high nickel content indicates that this is meteoric iron. Other early samples of iron may have been produced by accidental introduction of iron ore in bronze smelting operations.

Imperial China

China has long been considered the exception: by 5th century BC, metalworkers in the southern state of Wu had invented the blast furnace, and the means to both cast iron and to decarburize the carbon-rich pig iron produced in a blast furnace to a low-carbon, wrought iron-like material. It was thought that the Chinese skipped the bloomery process completely, starting with the blast furnace and the finery forge to get wrought iron. Recent evidence, however, shows that bloomeries were used earlier in China, migrating in from the west as early as 800 BC, before being supplanted by the locally developed blast furnace. Supporting this theory was the discovery of 'more than ten' iron digging elements found in the tomb of the Qin Duke Jing (d. 537 BCE), whose tomb is located in Fengxiang County, Shaanxi (a museum exists on the site today).[2]

Medieval Europe

Early bloomeries were relatively small, smelting less than 1 kg of iron with each firing. Medieval Europe saw the construction of progressively larger bloomeries, with a capacity of about 15 kg on average, though exceptions did exist. The use of waterwheels to power the bellows allowed the bloomery to become larger and hotter. European average bloom sizes quickly rose to 300 kg, where they levelled off through the demise of the bloomery. Water powered bellows and larger bloomeries also increased the heat to the point where the iron could melt; this was not considered desirable because it allowed carbon to diffuse into the molten iron, producing unworkable pig iron. Molten iron was not desirable until the advent of the blast furnace.

Bloomery type furnaces typically produce a range of iron products from very low carbon iron to cast iron. Cast iron occurs when the iron melts and absorbs 2% to 4% carbon. It cannot be forged. Natural steel is also produced, containing approximately 0.2% to 1.5% carbon. The master smith had to select bits of low carbon (wrought) iron and low carbon (mild) steel, forge weld them together to make sheets, pile bits of high carbon steel on the sheet, put another low carbon sheet on top and forge weld it all together. Then he had to forge it out thin, fold it and forge weld it. This pound-out, fold and weld process resulted in a more homogeneous product and removed much of the slag. The process had to be repeated up to 15 times when high quality steel was needed, as for a sword. This is part of the reason good swords were so expensive. Each welding heat burns out about 0.03% carbon, so the master smith had to make sure there was enough high carbon steel in the raw mixture.

British Isles

In England and Wales, despite the arrival of the blast furnace in the Weald in about 1491, bloomery forges (probably using water-power for a hammer as well as the bellows) were operating in the West Midlands region beyond 1580. In Furness and Cumberland, they operated into the early 17th century and the last one in England (near Garstang) did not close until about 1770.[3]

Europe

They survived in Spain and southern France as Catalan forges to the mid-19th century, and in Austria as the stuckofen to 1775. In Adirondacks, New York, new bloomeries using the hot blast technique were built in the 19th century.[4]

Sub-Saharan Africa

Smelting in bloomery type furnaces in West Africa and forging of tools appeared in the Nok culture in Africa by 500 BC.[5] The earliest records of bloomery-type furnaces in East Africa are discoveries of smelted iron and carbon in Nubia and Axum that dated to between 1,000-500 BC.[6][7] In Meroe particularly there are known to have been ancient bloomeries that produced metal tools for the Nubians and Kushites and produced a surplus for sale.

New World

In the Spanish colonization of the Americas, bloomeries or "Catalan forges" were part of 'self sufficiency' at some of the missions, encomiendas, and pueblos. As part of the Franciscan Spanish missions in Alta California, the "Catalan forges" at Mission San Juan Capistrano from the 1790s are the oldest existing facilities of their kind in the present day state of California. The bloomeries' sign proclaims the site as being "...part of Orange County's first industrial complex."

See also

References

  1. ^ This has been established experimentally by Skip Williams and Lee Sauder at Rockbridge, and by others.
  2. ^ "The Earliest Use of Iron in China" by Donald B. Wagner in Metals in Antiquity, by Suzanne M. M. Young, A. Mark Pollard, Paul Budd and Robert A. Ixer (BAR International Series, 792), Oxford: Archaeopress, 1999, pp. 1-9.
  3. ^ H. R. Schubert, History of the British Iron and Steel Industry (1957). R. F. Tylecote, History of Metallurgy (1991).
  4. ^ Gordon C. Pollard, 'Experimentation in 19th century bloomery production: evidence from the Adirondacks of New York' Historical Metallurgy 32(1) (1998), 33-40.
  5. ^ Duncan E. Miller and N.J. Van Der Merwe, 'Early Metal Working in Sub Saharan Africa' Journal of African History 35 (1994) 1-36; Minze Stuiver and N.J. Van Der Merwe, 'Radiocarbon Chronology of the Iron Age in Sub-Saharan Africa' Current Anthropology 1968. Tylecote 1975 (see below)
  6. ^ A History of Sub-Saharan Africa
  7. ^ The Nubian Past

External links